Systems-Based Inspections for Cleaning Validation

FDA DG 330
August 28, 2018
Albuquerque, NM

Destin A. LeBlanc
Cleaning Validation Technologies
www.cleaningvalidation.com

Objectives

- Describe cleaning processes and approaches
- Identify various techniques utilized to measure the effectiveness of cleaning processes
- Identify documents associated with cleaning validation processes
- Identify significant issues and typical problems with cleaning validation

Cleaning

- Definition: The process of removing potential contaminants from process equipment such that the equipment can be safely used for subsequent product manufacture
- Focus for this presentation is process equipment, not cleanroom cleaning

Critical cleaning?

- Critical cleaning must be validated
- Cleaning between products
- Focus on product contact surfaces
- Significant indirect product contact surfaces
- Applies to drug products and APIs
- Dedicated equipment
- Documented evidence of effectiveness
- Also address cleaning agent and bioburden

Non-critical cleaning?

- Validation not required for non-critical cleaning
- Floors, walls, outside of vessels
- Still have cleaning SOP
- Residues on such surfaces are addressed by containment procedures and personnel practices
- Only loosely adherent residues can become airborne for cross-contamination
- For highly hazardous actives, may evaluate as part of an overall risk assessment
- Some API intermediate steps (ICH Q7)

Life Cycle Approach

- Stage 1: Process Design (and Development)
- Stage 2: Process Qualification
  - Utilities, equipment, facility
  - Process Performance qualification (PPQ)
- Stage 3: Continued Process Verification (or maintenance of state of control, or validation maintenance)
- Based on FDA Process Validation guidance
Paradigm change
- Companies moving to “lifecycle” approach
- Legacy products will be in traditional paradigm
- But --
  - Design and development has always been done
  - Monitoring and control after validation runs has always been done
  - So, don’t be afraid to ask for it

Cleaning validation
- Documented evidence (reports)
- High degree of assurance (data)
- Consistency (traditionally multiple PQ runs)
- Predetermined quality attributes (of equipment)
  - For repeated cleaning processes
  - Throughout life cycle

Cleaning verification
- Documented evidence
- High degree of assurance
- For unique or non-repeatable events
- Quality attributes may be evaluated later depending on next product
  - For clinical products cleaning, infrequent production, cleaning after maintenance or deviations
  - One time protocol

Systems-Based?
- Inspection starts with higher level documents to determine if appropriate practices are specified
- Moves to lower documents as appropriate to confirm compliance with higher level documents
  - SOPs (cleaning and cleaning validation)
  - Rationales
  - Protocols and protocol reports
  - Batch records
  - Validation maintenance documents

Differences PV vs. CV
- Analytical values
  - PV has a goal for conc. of active (for example): want a narrow range (±)
  - CV has limits for active (for example) that firm wants to be below (<)

Differences PV vs. CV (2)
- Sampling
  - PV based on statistics - uniformity throughout batch and from batch to batch
  - CV based on worst cases - swab sample locations most likely to have higher levels of residues (difficult to clean)
Differences PV vs. CV (3)

- Processes
  - For production process, each manufacturing process is more or less unique
  - For cleaning process, firms prefer to use one cleaning process for all manufactured products

Cleaning process

- Cleaning agent
- Cleaning parameters
- Cleaning method
- ALL three are critical for defining and controlling the cleaning process
  - Addressed initially in design phase, but may be modified based on info from qualification and validation maintenance phase

Cleaning agent options

- Organic solvents
  - e.g., methanol
- Water
- Commodity chemicals (aqueous)
  - e.g., caustic, phosphoric acid
- Detergents
  - Surfactants
  - Formulated aqueous cleaners

Cleaning parameters

- Time (3 aspects)
  - Time before cleaning
  - Time of cleaning steps
  - Time after cleaning
- Action (agitation or impingement)
- Chemistry (includes concentration)
- Temperature

Cleaning parameters (cont.)

- Water quality
- Rinsing
- Soil condition
  - Dried during manufacture
  - Dried during dirty hold time
  - Soil levels (amount on surfaces)

Application methods

- Objective of application method is to contact the cleaning solution with ALL the surfaces to be cleaned to meet the requisite cleaning parameters
  - Time
  - Action
  - Temperature
**How apply**

- Static immersion
  - Fill tank with water to slowly dissolve
- Agitated immersion
- CIP (Clean In Place)
- Automated parts washer
  - Like home dishwasher
- Ultrasonic
  - Use of sound waves to remove particles
- Manual
- Solvent reflux
  - Boil with organic solvent like methanol

**Common steps**

- Pre-rinse
  - Water or solvent to remove bulk of residue
- Wash step
  - Utilizes cleaning agent or detergent
- Rinse
  - May include a final rinse with purer grade of solvent or water
- Drying and storage

**CIP parts**

- CIP supply line with spray ball
- Vessel to be cleaned
- CIP return line with return pump
- Cascade down sidewalls

**Manual cleaning**

- Types
  - Wipe
  - Soak
  - Brush
  - Spray
  - Combinations of above

**Manual issues**

- Control through...
  - More detail in SOP
    - Disassembly
    - Cleaning agent preparation
    - Specific cleaning actions
    - Rinsing
    - Drying
    - Reassembly
    - Storage
  - Training/qualifying of operators

**Measuring effectiveness**

- Key aspects
  - Setting residue limits
  - Analytical techniques
  - Sampling techniques
Residues measured

- How selected?
- Should be based on what cleaned, how cleaned, and effects on next product
- Minimum is usually active, cleaning agent, and bioburden
- Others that may be important
  - Endotoxin
  - Degradants or byproducts

Key aspect of CV

- "Intersection" of two products
  - Product just manufactured - good cleaning to remove residues to acceptable level
  - Product subsequently manufactured - "acceptable level" is based on possible contamination of this product
  - Must always evaluate effects on subsequently produced product

Residue limits

- For actives based on "safe daily amount"
- Traditional approach is dose-based calculation
- Newer approach is "health based exposure limit" (HBEL)
  - ADE: acceptable daily exposure
  - PDE: permitted daily exposure
- For compounds without dose (such as detergents), use ADI (acceptable daily intake) based on tox information (LD_{50})

How low?

- May contain measurable residues, but no contaminants
- A "contaminant" is an "unacceptable" residue
- Any residue must...
  - be medically safe
  - not affect product quality
  - be reasonably avoidable
  - leave equipment visually clean
- Last four points in FDA's Q&A on CGMP (6/8/2015)

Overall carryover equation

\[(S.D.A.)(B.S.)(S.A.)\]
\[(\text{max. dose Prod.B})(S.S.A.)(S.E.A.)\]

Where
\[
S.D.A. = \text{safe daily amount of active of } A
\]
\[
B.S. = \text{minimum batch size Prod.B}
\]
\[
S.A. = \text{sampled area}
\]
\[
S.S.A. = \text{shared surface area}
\]
\[
S.E.A. = \text{solvent extraction amount}
\]
(For finished drug product manufacture)

Other considerations

- For highly hazardous actives (allergens, cytotoxics, actives with reproductive concerns, etc.)
  - May set limit based on LOD (limit of detection) of analytical technique using best available procedure, OR
  - May dedicate equipment, OR
  - May set limit on ADE or PDE using the specific highly hazardous property (substitute for 0.001 minimum daily dose of active in equation in previous slide)
### Other considerations (2)
- For highly hazardous actives, may want to look at other modes of potential contamination (these are not strictly process equipment cleaning validation, but may be addressed by risk analysis)
  - Non-product contact surfaces (from dusts that become airborne, settle on surfaces, become airborne again, and contaminate next product)
    - Containment practices (including HVAC)
    - Room cleaning practices
    - Operator practices, garments

### Default limits
- Default limits are sometimes used if more stringent than values based on “safe daily amounts”
- Typical defaults
  - 10 ppm of active in next product (not 10 ppm in analytical sample)
  - 4 µg/cm² of active based on surface area (this is typical upper limit for visually clean)
- These address situations in which carryover could be excessively high, or address concerns about other product quality effects

### Limit for microbes
- Limits based on scientifically justified carryover calculations usually result in impractically high values
- Most will default to limit of ≤25-50 CFU per 25 cm² (≤1-2 CFU/cm²) for non-sterile manufacture
- For rinse water (non-sterile manufacturing), default to Purified Water specifications

### Visual cleanliness
- Include visual inspection
- Complements rinse and/or swab sampling
- Key is to not have cleaning residues left behind
- Issues
  - Background variations
  - Rouge - may be indicative of a maintenance problem, but generally not a cleaning problem

### Analytical method
- Is it a direct measure of residue?
- Is LOD/LOQ appropriate for limit in analytical sample?
- Both specific and non-specific methods may be used

### Specific method
- Unequivocally measure target residue in the presence of expected possible interferences
- Examples: HPLC, UPLC, UV, ELISA
Specific method (2)

- Potential problems with specific methods
  - Interference from cleaning agent or cleaning process by-products
  - Active degraded in cleaning process so that residues are degradants, not intact active
  - If degrades and use specific method for active, will always be non-detectable
  - Addressed in method design and development

Non-specific methods

- Measure any species with a certain response
- Most common is TOC (Total Organic Carbon)
- See FDA’s Q&A on cGMP for Drugs, May 2005 for issues in proper use

Why TOC acceptable?

- Residue limit is NOT goal
- Goal is to be below limit
- If treat all measured Carbon as if it were from the target residue (worst case), AND it is below the acceptance limit, can have assurance that residue is below limit

Analytical method validation

- Generally done for cleaning validation
  - LOD/LOQ
  - Accuracy - closeness to true value
  - Precision - closeness among measurements
  - Range
  - Linearity
- For cleaning verification mode in clinical manufacture, may have simpler analytical method validation (pass/fail test, for example)

Sampling methods

- “Swab” sampling
  - Sometimes called “direct” sampling
- “Rinse” sampling
  - Sometimes called “indirect” sampling

Swabs

- Advantages
  - Can focus on “worst-case” locations
  - Mechanical means of removing substances
- Issues
  - Interferences from swab
  - Swabbing is a manual procedure
  - Access to sampling sites
### Swabbing SOP

- Specify swab (supplier and part no.)
- Specify surface area to be swabbed (usually 25-100 cm²)
- Specify wet or dry (& solution, if wet)
- Specify template (if used)
- Specify number of swabs
- Specify swab pattern
- Specify vial
- Specify swab transport
- Specify blanks/controls

### Swabs

![Swab Image]

### Pressure effects

- Template more consistent
- But template less useful on “non-flat”
- Non-flat surfaces are generally going to be the worst-case locations that require the eyeball method
- My preference: Rather than training on both methods, spend more time on training on eyeball method, since this will be on most critical surfaces

### Template vs. “Eyeball”

### Swab sampling locations

- Most difficult-to-clean locations
  - Good practical common sense
  - Prior experience
- Sites for non-uniform contamination
  - Different materials
  - Functional locations

### Rinse sampling

- Definition: Using a solvent to contact all surfaces of sampled item to quantitatively remove target residue
- Solvent can be water, water with pH adjusted, or organic solvent
- Must contact all surfaces
- Residue measured in collected sample
“Rinse” sampling

- Advantages
  - Sample “inaccessible” locations
  - Provides overall picture

- Issues
  - Solubility of residue in rinse solution
  - Need to relate amount in rinse sample to potential contamination of next product

Recovery studies

- Recovery study - swabs & rinse
  - Procedure
    - Spike coupon with known amount
    - Remove in swab or simulated rinse procedure
    - For swab, desorb
    - Analyze sample
  - Done at or below surface acceptance limit
  - In method validation or separate study

Swab recovery schematic

- Procedure
  - Spike coupon with known amount
  - Remove in swab or simulated rinse procedure
  - For swab, desorb
  - Analyze sample

Acceptable recovery

- >80% is good
- >50% is okay
- <50% is questionable
- Caution: May use recovery factor to correct measured analytical value or acceptance limit (but not both)

Challenges

- For PPQ runs
  - Process conditions (within normal process conditions)
  - Different operators for manual cleaning
  - Bioburden
  - Dirty hold time
  - Clean hold time
  - Under life cycle approach, may be addressed in design/development

Dirty hold time

- What?
  - Time between end of manufacture and beginning of cleaning

- Why?
  - Manufactured product may be harder to clean (dries, bioburden growth)

- Issues
  - Sometimes cleanability does NOT change with time (e.g., dry products)
## Dirty hold time (2)

- **What do?**
  - Specify a maximum hold time in cleaning SOP
  - Challenge worst-case condition in validation (at least one run at maximum if not addressed in design/development)

## Clean hold time

- **What?**
  - Time from end of cleaning to beginning of manufacture
  - Sometimes called expiry period

- **Why?**
  - Equipment may become recontaminated during storage (bioburden, dust)

- **Issues**
  - If dry and sealed, should not be recontaminated

## Clean hold time (2)

- **What done?**
  - Specify maximum hold time in SOPs
  - For extended storage, dry equipment (as part of cleaning SOP)
  - For extended storage, seal/wrap equipment appropriately
  - Measure residues before and after storage (may be in separate protocol)
  - Usually are measuring bioburden and visual cleanliness
  - Criteria is change from baseline

## Grouping strategies

- **Grouping**
  - By product (soil)
  - By equipment

- **Also called matrixing, family approach, bracketing**

- **Rationale**
  - Simplify amount of validation work

## Grouping conditions

- **Conditions to meet for product grouping**
  - Similar product type
  - In same equipment train
  - Identical cleaning process
    - Cleaning agent
    - Cleaning method
    - Process parameters

## Representative product

- **Representative:** most difficult to clean

- **Basis of selection**
  - Historical
  - Solubility data
  - "Point system" based on several factors
  - Lab/pilot study
**Representative limit**
- Residue limit selection
- Lowest limit among group
  - OR
- Validate most difficult to clean (at its limit) and most “toxic” (product with lowest limit)

**Equipment grouping**
- Must be similar type
- Identical equipment (identical for cleaning purposes)
- May involve simple equipment of different sizes
  - Example: 300L, 500L and 1000L tanks
- Alternatives --
  - Validate separately largest & smallest sizes
  - Validate together testing extremes

**Grouping conditions**
- Look for rationales for:
  - Forming groups
  - Selecting worst case
  - Selecting residue limits

**CV maintenance**
- Monitoring
- Change control
- Deviations & CAPA
- Training and retraining
- Continuing control
- Note: “revalidation” is disappearing from FDA lexicon

**Monitoring objective**
- Different companies may use the word “monitoring” differently
- For me, *routine* monitoring is done every cleaning event initially, and then perhaps on a reduced schedule
- Collect data to determine process control
- Monitoring alert/action levels generally more stringent than limits in protocol

**Monitoring during routine cleaning**
- May monitor key control parameters
  - Time(s)
  - Temperature(s)
  - Cleaning agent concentration
  - Pressure
- May monitor key indicators of control
  - Rinse water TOC or conductivity
  - Visual examination
**Regular review**

- Repeat of PPQ run on any *significant* change
- On a “regular” basis (such as yearly) evaluate consistency based on
  - Monitoring data
  - Change control data
  - Deviations
  - Quality records
  - Training